

CONCEPTS

We comprehensively and one-stop supply nickel-based, copper-based, and aluminum-based welding materials, as well as thermal conductive and heat dissipation materials, produced in-house by our powerful partners. Focusing on the compounding technology that is the core of brazing materials, we achieve precise, innovative, and high-quality welding, and provide technical support throughout the entire process, from material selection to the optimization of welding conditions.

PRODUCTS

Nickel Brazing Materials

BNi2, BNi6, BNi7, BNi15, BNi16, L925, L1040

Copper Brazing Materials

B-Cu1, B-CuSn8, B-CuSn12, B-CuPSnNi

Aluminum Brazing Materials 4047, 4045, 4343

APPLICATIONS

Heat Tubes

EGR Coolers, EGR Components
Heat Exchanger Components
Heat Exchangers for Gas Water Heaters
Oil Coolers
Electronic/Electrical Components
Aviation Turbine Blades and Jet Engine Components
Medical Equipment / Precision Instruments
Joining Ceramics and Metals, Joining Superalloys
Cutting Tools, Drilling Tools, Edged Tools
and others

Nickel-based Brazing Materials

Nickel Brazing Material (BNi2)						Form				
	Ni	Cr	Si	В	Fe	Paste	Powder	Foil	Wire	Ring
BNi2	82.5%	7%	4.5%	3%	3%	•	•	•		

Brazing of stainless steel is performed under a vacuum environment or protective atmosphere. It is a technique widely adopted for joining heat exchangers such as automotive EGR coolers. The brazing material composition contains boron as a melting point depressant, enabling low-temperature brazing. This suppresses inter-diffusion with the base material, making it suitable for brazing thin workpieces.

Nickel Brazing Material (BNi6)					Form					
	Paste	Powder	Foil	Wire	Ring					
BNi6	89%	11%	•	•						

The composition of BNi6 contains phosphorus as a melting point depressant, achieving a low melting point. It is mainly used for brazing thin-walled stainless steel components

Nickel Brazing Material (BNi7)						Form					
	Ni	Cr	Р	Paste	Powder	Foil	Wire	Ring			
BNi7	76%	14%	10%	•	•	•					

The composition of BNi7 is Ni 76%, Cr 14%, P 10%, and the forms are paste, powder, foil, wire, and ring.

Nickel Brazing Material (BNi15)						Form					
DN:45	Ni	Cr	Si	Р	Paste	Powder	Foil	Wire	Ring		
BNi15	60%	30%	4%	6%	•	•					

The composition of BNi15 is Ni 60%, Cr 30%, Si 4%, P 6%, and the forms are paste, powder, foil, wire, and ring.

Nickel Brazing Material (BNi16)						Form				
DN:40	Ni	Cr	Si	Р	Paste	Powder	Foil	Wire	Ring	
BNi16	58.5%	29%	6.5%	6%	•	•				

Silicon (Si) and Chromium (Cr) work together to form a dense complex oxide layer (e.g., $Cr_2O_3-SiO_2$), enhancing the stability of the joint in high-temperature oxidizing environments and corrosive conditions.

Nickel Brazing Material(L925)								Form		
	Ni	Cr	Si	Р	Others	Paste	Powder	Foil	Wire	Ring
L925	69.5%	21%	0.5%	8%	Bal Bal Barium lodide		•	•		

The composition of L925 is Ni 69.5%, Cr 21%, Si 0.5%, P 8%, Others Bal Barium lodide, and the forms are paste, powder, foil, wire, and ring.

Nickel Brazing Material (L1040)							Form				
	Ni	Cr	Si	Р	Others	Paste	Powder	Foil	Wire	Ring	
L1040	66.5%	25%	1.5%	6%	Bal Bal Barium lodide		•	•			

Applied to brazing of stainless steel, heat-resistant steel, and components operating in high-temperature environments (e.g., diffusers and heat exchangers for aircraft engines). The adoption of foil material (thickness 0.05–0.2mm) reduces material loss by up to 40% and improves manufacturing efficiency. After brazing, a brazed joint (porosity ≤0.2%, tensile strength ≥350MPa) can be easily obtained.

Copper-based Brazing Materials

Copper-based Brazing Materials(B-Cu1)			Form						
B-Cu1	Cu	Paste	Powder	Foil	Wire	Ring			
	≥ 99.95%	•	•						

It achieves high joint strength and no post-weld residue for stainless steel, carbon steel, and cast iron.

Copper-based Brazing Materials(B-CunS8)						Form					
	Cu	Sn	Р	Paste	Powder	Foil	Wire	Ring			
B-CuSn8	91-92%	7.5-8.5%	≦0.4%	•	•		•	•			

A phosphor bronze-based brazing material for joining ferrous metals, stainless steel, and dissimilar metals.

Copper-based Brazing Materials(B-CuSn12)					Form					
	Cu	Sn	Paste	Powder	Foil	Wire	Ring			
B-CuSn12	88%	12%	•	•		•	•			

For dissimilar metal brazing of copper and stainless steel.

Copper-based Brazing Materials(B-CuPSnNi)						Form					
	Cu	Ni	Sn	Р	Paste	Powder	Foil	Wire	Ring		
B-CuPSnNi	78%	6%	9.5%	6.5%	•	•	•				

For joining copper to copper.

Aluminum-based Brazing Materials

Aluminum-based Brazing Materials (4047)					Form					
4047	Al	Si	Paste	Powder	Foil	Wire	Ring			
4047	88%	12%	•	•		•	•			

Aluminum-Silicon eutectic material with a melting temperature of approximately 580°C can be strengthened by transformation heat treatment and thermal holding.

Aluminum-based Brazing Materials (4045)			Form				
4045	Al	Si	Paste	Powder	Foil	Wire	Ring
	90%	10%	•	•		•	•

Melting temperature 575 \sim 590°C, capable of strengthening by transformation heat treatment and thermal holding.

Aluminum-based Brazing Materials (4343)			Form				
4242	Al	Si	Paste	Powder	Foil	Wire	Ring
4343	92.5%	7.5%	•	•		•	•

Melting temperature 575 \sim 615°C, capable of strengthening by transformation heat treatment and thermal holding.

Nickel Phosphorus Alloy

Nickel Phosphorus Alloy(Form		
Ni-P Alloy	Ni	Р	Block
	81.5%	18.5%	BIOCK

Supermicro Spherical Powder

Supermicro Spherical Powder (Copper Powder for Cold Spray)		Form
Copper Powder for	Cu	
Cold Spray	≥ 99.95%	Powder

It has a special particle size distribution and is applicable to the cold spray process for communication striplines and automotive components.

Supermicro Spherical Powder (Powder for Laser Cladding)	Form	
BNi7 and BNi15 powders can be provided according to the specifications for laser cladding.	Powder	

Supermicro Spherical Powder (Copper Alloy Powder for Bearing Bushings)					Form
Copper Alloy Powder for	Cu	Ni	Sn	Fe	
Bearing Bushings	86.7%	6%	5.7%	1.6%	Powder

Applicable to the sintering of plate material for bearing bushings, and customization is possible upon request.

Graphene

Graphene Oxide	Form	
Graphene Oxide Paste	Paste	
Graphene Oxide Powder	Powder	
Reduced Graphene Oxide Powder (RGO Powder)	Powder	

