

# アルミニウム鋳造産業に Alpro-Hが与える

つの利点

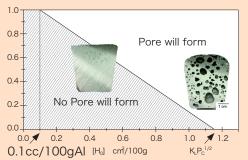
溶存水素測定器『Alpro-H』簡単・迅速・正確な測定

高品質

適切な水素濃度基準を迅速・ 簡易に管理でき、鋳巣や不純 物といった鋳造欠陥のない製 品製造を可能にします。 とは当上本

適切な GBF 処理の時間が設定可能になり、作業速度を高め、加熱に必要な電力を削減し、溶融温度の低下を実現できます。

3 コスト削減

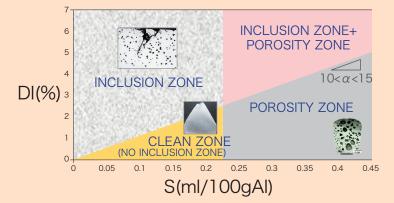

不良率・工程時間を削減し、生産性を向上させることでコストを削減可能となります。

フジBC技研 紫菜

## S値(溶存水素量)から得られる品質情報

1.

鋳巣欠陥を防止する 臨界水素濃度






2.

#### インクルージョン(不純物)予測

密度指数(DI)と溶存水素量(S)を測定し、インク ルージョン分布図を用いれば、アルミニウム溶湯内のイ ンクルージョン(不純物)量を予測可能です。



## DI(密度指数)とS(溶存水素量)の関係

DI (密度指数,%) は主に溶存水素量から算出されますが、以下の式に示すとおり溶湯中のインクルージ ョン(不純物)量にも影響を受けます。

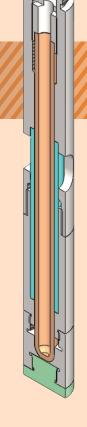
 $DI(\%) = \alpha S + \beta [Inclusion]$  $10 < \alpha < 15$ 

### 水素濃度測定の原理

本装置は、固体電気化学セラミックチューブのセンサーを採用しています。 一端が閉じたセラミックチューブをアルミニウム溶湯に浸漬すると、溶湯中の水素濃度に応じて起電力が発生 します。この起電力を測定することで、水素濃度を算出可能です。

 $E=E_0+9.921\times10_{-5}T\log[H_2]$ 

(Eo: センサー定数 / T: 絶対温度[K])


さらに、シーベルトの法則 を適用し、測定値にアルミニウムの合金定数を代入することで、溶湯中の溶存水素 量(S)を計算できます。

 $log S = 2.796 - 2760/T + 1/2 log p_{H2} - log f_{H}$ 

パラメータの定義

:溶存水素量(ml/100gAl) :溶湯の絶対温度[K] fh :アルミニウムの合金定数

E。:センサー定数



#### PRODUCT 01

Portable Dissolved Hydrogen Measuring Device for Molten Metals

## AlproH palm

-タブル型溶湯水素測定装置

- 軽量かつ携帯性があり便利
- ▶高速かつ正確な直接測定
- ▶長寿命で低メンテナンスコスト ▶新型電気化学センサー

- /// (Park-Rapp方式)搭載 ▶プリンタ接続およびデータ保存対応

#### 仕様

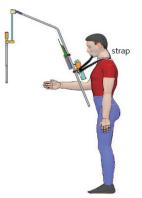


#### 仕様

| 測定範囲   | 0.05~0.99mL/100gAl                       |  |
|--------|------------------------------------------|--|
| 精度     | ±0.02mL/100gAl または ±15%<br>(いずれか大きい方を適用) |  |
| 再現性    | ±0.03mL/100gAl または ±10%<br>(いずれか大きい方を適用) |  |
| 測定所要時間 | 約 2.5分(標準)                               |  |
| 最大測定深さ | 200mm                                    |  |
| 測定温度範囲 | 630~780°C                                |  |
| 本体サイズ  | 120×244×46mm                             |  |
| 本体重量   | 600g                                     |  |
| 動作原理   | 固体電気化学方式                                 |  |
| センサー寿命 | 約300回使用(交換式)                             |  |

#### 構成

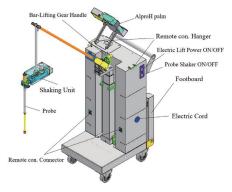



#### 合金組成の選択

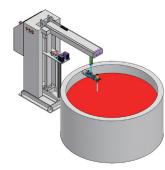
合金の種類は、分析装置に 保存されているメニューから 選択可能です。該当がない 場合は、成分を入力すれば 装置が対応する係数を自動 生成します。



Alloy Selection


#### プローブスタンド オプション




簡易型測定用補助ツール



電動リフトA



電動リフトB



自動測定スタンド

AlproH palmで溶湯に直接プローブを挿入して溶存水素量を測定する場合、専用プローブスタンドの使用 を推奨いたします。この専用プローブスタンドはキャスター付きで移動が容易であり、プローブを安定して保 持できます。また、電動リフトによりプローブを上下に動かして測定できるほか、プローブ揺動機能によってセ ンサー内への水素の流入を促進し、平衡状態を維持します。

または簡易型測定用補助器ツールを用いても溶存水素量を測定可能です。



# AlproH

GBF用水素モニタリング装置

- ▶水素濃度に基づくバブリング時間制御を可視化▶GBF (Gas Bubble Filtration)処理時間の最▶溶融温度降下の最小化▶アルゴン(Ar)ガス消費量の削減▶測定時間の短縮により生産性・効率をの最大化

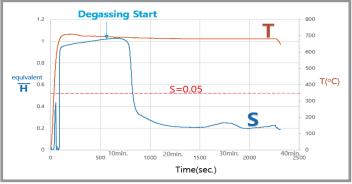
#### 仕様

|           |                  | 1  |
|-----------|------------------|----|
| 項目        | 内容               |    |
| ディスプレイ    | TFT 10.1 インチ     | Ų. |
| 測定精度      | ±0.05 cc/100gAl  |    |
| 分解能(最小単位) | 0.01cc/100gAl    |    |
| 最大測定時間    | 3 時間             |    |
| 最大測定深さ    | 15cm             |    |
| 測定可能溶湯温度  | 650~780°C        |    |
| 推奨保管温度    | -10~70°C         |    |
| 標準センサー長   | 0.9 m            |    |
| 標準ケーブル長   | 2 m              |    |
| モニターサイズ   | W300xH210xT80 mm |    |
| モニタ-重量    | 3Kg              | •  |
| データ保存     | SDカード(32GB以下)    |    |
| 消費電力      | 5W未満             |    |
| 電源        | 220V(50-60Hz)    |    |
| 取付方式      | 壁付け/VESA         |    |



#### 導入メリット

- 1. 効率的なGBF制御 GBF (Gas Bubble Filtration) 中の水素濃度の変化を正確に確 認することで、高い品質の溶湯を 管理できます。
- 2. 生産性向上 最適なタイミングで工程を停止 し、工程時間を短縮します。
- 3. 省エネ 溶融温度の低下の抑制と、過熱 も最小限に抑えます。
- 4. 材料コストの削減 アルゴン(Ar)ガスとカーボンブレ ードの消費を最小限に抑えます。


#### 構成



GBF工程用リアルタイム 水素濃度監視システム

#### センサー



